11.
 ［季刊〕
 Japan Spinal Cord Foundation

オリゴデンドロサイトに分化する「OrigoGenie」

再生医療関連の創薬ベンチャーとして，国内外の注目を集めている株式会社オリゴジェン（本社：東京）は，オ リゴデンドロサイトに高効率で分化するヒト神経幹細胞「OrigoGenie」」開発への取り組みが評価さ れ，2016年12月，J－TECH STARTUP認定企業に選ばれた。同社は将来，脊髄損傷の臨床治験をおこな う計画だ。

オリゴデンドロサイトは，髄鞘（ミエリン）を形作る細胞。髄鞘は，神経線維の束の周囲を鞘のように取り囲み，保護し，信号の流れを促す働きがある。脊髄損傷の多くは，神経そ のものが断裂しているばかりでなく，周りの髄鞘も傷ついて働きが損なわれていることから，神経を再生するのと併せて髄鞘も再生することで，より大きな機能改善が見込めるとさ れている。そのためにオリゴデンドロサイトは重要な要素と なる。オリゴデンドロサイトに分化する神経幹細胞として，ES細胞由来やiPS細胞由来，体性幹細胞由来がこれまでにも検討されてきた。ただし，ES細胞由来やiPS細胞由来には腫瘍化のリスクがあり，体性幹細胞由来は，腫瘍化のリスク はないものの，オリゴデンドロサイトに分化するのが5～ 20% で，効率の悪さが課題とされてきた。これに対し，オリゴ ジェンが開発したOrigoGenieは，腫瘍化のリスクがなく，

目次

```
再生医療研究情報
    オリゴデンドロサイトに分化する「OrigoGenie」.............p. . }
    AMED再生医療公開シンボジウム
    臨床応用に向けて着実に前進
    岡野研News
    iPS細胞による臨床研究計画を学内倫理委員会へ申請•.....p. . }
    世界からみた日本の幹細胞治療の状況
        /3Dプリンターで末梢神経再生に成功 ......................... }
    W2W2016
    北米地域での治療法開発の進展状況......................6~7
海外ヶア情報
```



```
ドリームキャツチャー
    村山哲也「それじゃ, まずはルワンダに行かなくては。」••p.10~11
воок
    『ペンギンが教えてくれたこと』
    『頸餚損傷のリハビリテーション改訂第3版』.................. }1
```

オリゴデンドロサイトに分化する効率もほぼ 100% であると いう点で，大きなアドバンテージをもつ。また，同社は， OrigoGenieの表面に脊髄損傷で断裂した神経軸索の再延長効果があるとされるポリシアル酸（PSA）が発現しているこ とから，損傷部への移植により軸索が再延長する効果も期待できるとしている。

オリゴジェンは，OrigoGenieの臨床治験を，まず2019年 をめどに髓鞘が先天的に形成されない先天性白質形成不全症でおこない，2021年から，脊髄損傷での臨床治験を開始したい考え。また同社は，多発性硬化症やアルツハイマー病など広い範囲で障害が起こる疾患に対しても，OrigoGe－ nieを用いたスクリーニング系を開発して創薬に結び付けた いとしている。

株式会社オリゴジェンは，ヒト神経幹細胞を用いた中枢神経疾患に対する再生医療製品の開発と，この細胞を用い た創薬を事業化することを事業目的として，2015年8月に設立されたベンチャー企業である。国内外の研究者と共同研究を進めており，脊髄損傷治療ではジョンズ・ホプキンズ大学のジョン・マクドナルドPh D．M Dの研究協力を得ている。

城戸常雄オリゴジェン代表取締役は，京都大学助手（生理学）から米国国立衛生研究所（NIH）の神経疾患•脳卒中研究所，ジョンズ・ホプキンズ大学を経て起業。これまで， NEDO（国立研究開発法人新エネルギー・産業技術総合開発機構）のスタートアップイノベーター募集で研究開発型ベ ンチャー支援事業に採択されている。

なお，OrigoGenieは日本，米国，モンゴルで特許取得済み。 （日本：特許第5649745号〈2014年11月21日成立〉）
－参照URL
1）日経テクノロジーオンライン：春䯣損傷治療に光，新しいヒト神経幹細胞開発で挑む（2016年12月6日）
http：／／techon．nikkeibp．co．jp／atcl／column／15／120100084／120600008／ 2）NEDOドリームピッチ
https：／／www．dreamgate．gr．jp／InnovationLeadersSummit／pitch＿nedo25．php

AMED再生医療公開シンポジウム

日本の再生医療研究の進渉状況を発表するシンポジウ ムが，2017年2月2日（木）にTKPガーデンシティ品川にて開 かれ，一般応募で集まった 1,000 人以上の市民を前に昨年 1年間の研究の進渉状況が発表された。これは，医療分野の研究開発を基礎から実用化まで一貫した支援をおこなう
 したもの。まず，京都大学iPS細胞研究所（CiRA）所長の山中伸弥教授をはじめ，iPS細胞由来の膵島や幹細胞の臨床応用に取り組んでいる宮島篤教授（東京大学分子細胞生物学研究所），細胞の生産システムの構築に取り組む紀ノ岡正博教授（大阪大学大学院工学研究科教授）など5名の研究者 による講演がおこなわれた。続いて再生医療関連の創薬に積極的に取り組んでいる大日本住友製薬の木村徹経営企画部長を迎えてのパネルディスカッション。会場ホールに は，AMEDの支援を受けて研究を進めているさまざまなグ ループからのポスター報告があった。

山中教授の講演では，2014年に実施された加齢黄斑変性症の患者自身の細胞からつくったiPS細胞による色素上皮細胞シートの移植で，腫瘍化や免疫応答での安全性が確 かめられたことが報告された。ただし自家移植はコストと時間がかかるため，CiRAではiPS細胞ストックの構築に努めて きた。iPS細胞ストックについては，同じHLA型（免疫応答に関連する白血球の分類）をもっていてもドナーによって分化 しやすいタイプが異なると説明。脊髄損傷の臨床試験に向 けて準備していたiPS細胞は臍帯血由来のものだったが，作製の過程で試薬を間違えた可能性が否定できないというこ とが判明したため，2017年1月末にいったん作製を中止す る決断をしたことを発表した。しかし2月中に作製を再開し，9月には提供を開始できる見达みと語った。

臨床応用に向けて着実に前進

また，臨床グレードのiPS細胞作製に現在50人以上のス タッフが従事しているが，これを70人に増員して体制の強化を図ること，今年4月には新たな末梢血由来のiPS細胞を作製し，これにより日本人の人口の 30% をカバーできるよう になる予定であることも明らかにされた。

パネルディスカッションでは，再生医療の産業化について木村氏から，iPS細胞からの分化および培養が従来の細胞培養と異なる点として，数か月に渡る長期間のプロセスが必要とされることと，まだ再現性が十分でないため条件を一 つずつ検討して決めていかなければならないという発言が あった。シンポジウムの最後は，山中教授が自らのモットー として「VW（Vision \＆Hardwork）」を挙げ，「患者さんにiPS細胞を届けたいという夢があってこそがんばれる。このよう な明確なVisionをもてたことを幸せに思う」との言葉によっ て結ばれた。

なお，脊髄損傷治療用のiPS細胞提供が遅れることで今後のスケジュールへの影響について，臨床試験を予定して いる慶應義塾大学の岡野栄之教授（生理学）と中村雅也教授（整形外科）は，当基金からの質問に対し，「2017年3月 に，『再生医療に関する安全確保に関する法律』に基づいた亜急性期の臨床研究の申請をおこなうという計画は，予定通り申請いたします」と回答している。また，「CiRAでは現在臨床グレードの新しいiPS細胞株の作成に，次々と取り組ん でいます。良いiPS細胞株がCiRAから届き次第，臨床研究に向け，移植用の神経前駆細胞の調製を開始し，調製と安全性確認のための確認実験が完了した段階で厚生科学審議会再生医療等評価部会での審査を受け，ここで承認された ら臨床研究開始となります」と今後の見通しを述べた。

岡觜研News

脊髄損傷の治療法の開発において世界の最前線をゆく慶應義塾大学医学部•岡野栄之教授（生理学）の研究室から，最新の情報をピックアップしてお届けします

iPS細胞による臨床研究計画を学内倫理委員会へ申請

2月10日，岡野教授と中村教授によるチームは，iPS細胞 を用いた春髄損傷治療の臨床研究を学内の倫理委員会に申請した。学内での審査を通った後に，専門家から成る国の審査機関で技術や手順に問題はないかが検討され承認を得たうえで臨床研究が始まる。前掲記事にあるとおりiPS細胞の提供は当初の予定より遅れるものの，チームは2018年前半にも臨床研究を開始したい考えで，実施するための

準備は着々と進められている。
今回申請された臨床研究の対象は，受傷後2～4週間の亜急性期の患者。iPS細胞ストックを利用した他家移植とな る。安全性の確認をおもな目的として，最終的には2年ほどの間に 7 人の患者に移植を実施し，1年間経過観察をおこなう。

この研究の成果は，次の段階である慢性期の治療法開発 にもつながっていく。

新たな䕉択肢 ご存じですか？

【使い捨て型親水性コーティング 自己導尿カテーテル

自己導尿カテーテルには，再利用型，使い捨て型などのタイプがあります。特に，使い捨て型で，親水性コ一ティングが施されているカテーテルは パッケージから取り出してすぐに使用でき，外出時にも手間がかかりません。現在の自己導尿力テーテルにお困りでしたら，一度医療機関にご相談ください。

親水性コーティングとは？

水が付着すると，カテーテル表面で水滴にならずに広がる性質（親水性）をもつコーティング。

自己導尿カテーテルは，医療機器です。医師の指導の下で，ご選択・ご使用下さい。
2016年4月，診療報酬に特殊カテーテル加算（親水性コーティングを有するもの）が新設されました。

世界からみた日本の幹細胞治療の状況

2016年12月に雑誌「臨床評価」に掲載された論文 ${ }^{1}$ から，脊髄損傷に関する部分を，以下に抜粋•編集して紹介する。

同論文は，日本の国際競争力を把握することを目的とし た調査の報告である。再生医療分野の開発パイプラインを中心に，脊髄損傷ほか全5疾患について臨床試験データ ベース ${ }^{2}$ および医薬品データベース ${ }^{3}$ における最高開発段階を調べている。

脊髄損傷については，国内のアカデミア発パイプライン のうち，すでに治験に入っているシーズが3件でいずれも自己由来細胞によるものだった。

世界的には，合計20件の臨床試験が実施されており，や はりその大半が自己由来細胞を用いたものだった。開発初期段階のものが多く，骨髄由来細胞を用いた試験が 12 件と半数以上を占める一方，ES細胞あるいは胎児由来細胞から分化誘導させた神経系細胞を用いる試験もおこなわれてい る。開発シーズはいずれも薬事承認の取得には至っていな い（表）。

同論文は，2014年に施行された薬機法（改正薬事法）に より，再生医療に関する審査制度が確立した日本では，アカ デミアが手がけたシーズが次々に治験に移行しており，今後 ますます開発の速度は加速することになるだろうとしている。

世界でもトップレベルのポテンシャルをもっていると評価 し，今後も開発費の適切な投資をおこなっていくことが肝要 であると結んでいる。

表 世界における脊髓損傷に対する幹細胞治療の開発•承認状況（2015年10月現在）

	I	I／II	II	III	販売	合計
合計	6	9	4	1	0	20
骨髁由来細胞	4	5	3			12
神経幹細胞		1				1
シュワン細胞	2					2
オリゴデンドロサイト前馼細胞（ES由来）		1				1
中枢神経系幹細胞 （胎児脳由来）			1			1
湾帯由来細胞		1		1		2
HGF		1				1
	I	I／II	II	III	販売	合計
自己由来細胞	6	6	3			15
他家由来細胞		2	1	1		4
その他（HGF）		1				1

－参照論文および参照サイト
1）世界における脳梗塞，脊髄損傷，心疾患，下肢虚血，軟骨損傷に対する幹細胞治療の承認状況•臨床試験状況（福島雅典他，国立研究開発法人日本医療研究開発機構（AMED）主催「プロジェクト連携シンポジウム」より「ア カデミア発シーズ開発のシナジー効果促進のために」の一部）
2）Citeline．Trialtrove［cited Oct．13，2015］
（https：／／citeline．com／products／trialtrove／）
3）Citeline．Pharmaprojects［cited Oct．13，2015］
（http：／／citeline．com／products／pharmaprojects／）

3Dプリンターで末梢神経再生に成功

京都大学を中心とするチームは，バイオ3Dプリンター「レ ジェノバ®（Regenova）」（サイフューズ社）を用いて，長さ 8 mm ，直径 3 mm の三次元神経再生導管を作製。これを坐骨神経を損傷したラットに移植し，8週間後に検証する実験 をおこなった。運動機能は体のほかの部分の神経を移植し た場合とほぼ変わらないレベルに改善し，損傷した神経も移植した導管と一体化してほぼ元の太さまで回復した。シリ コン製の管を埋め込む治療をおこなった対照群と比べて， つながった神経の太さは数倍にもなった。

末梢神経損傷の治療では，患者自身の体のほかの部分 から神経を採取し，損傷部に移植する治療がおもにおこな われているが，採取部位に知覚異常が残るなど，患者の負担は大きい。また，人工神経も開発されているが，機能回復 は自身の神経を移植する方法より劣る。バイオ3Dプリン ターによる再生導管が実用化されれば，患者の負担は軽く なり，自家移植とほぼ同等の機能回復が得られると見込ま れる。

レジェノバ『は，分離した細胞が凝集する現象を利用し，生きた細胞の塊を剣山に積み重ね，還流装置を用いて熟成 させることで三次元構造体を作製する装置で，これまで軟骨 や血管を作製した実績がある。

今回の実験に用いたのはヒトの皮膚から採取した線維芽細胞。チームは，細胞のみから作製された再生導管から放出されるサイトカインや血管新生が軸索再生の誘導を促し たとみている。ヒトでの医師主導治験は3年後に開始の予定。

池口良輔准教授（京都大学整形外科）は，「中枢神経の再生 に応用することも検討している。使用する細胞や移植方法，評価法などいくつかの問題を解決する必要がある」と話す。

参照論文

Yurie H，Ikeguchi R，et al．；The Efficacy of a Scaffold－free Bio 3D Conduit Developed from Human fibroblasts on Peripheral Nerve Regeneration in a Rat Sciatic Nerve Model，PLOS ONE，12（2）， 2017.

W2W2016北米地域での治療法開発の進展状況

Abstract

米国の脊髄損傷者団体U2FP（Unite to Fight Paralysis；まひと闘う同盟）が主催するシンポジウム，W2W （Working to Walk）が，2016年10月28～29日に米国ミネアポリス市で開催され，当基金から伊藤誠敏理事が参加しました。ここで発表された中から，いま米国で進行中の最先端の脊髄損傷治療研究について報告します。

■HuCNS－SC移植：治験中断までの結果まとめ ——ステフェン・フーン博士（ステムセルズ社）

ステムセルズ社では，胎児の脳から採取し精製したヒト中枢神経幹細胞HuCNS－SCを使って脊髄再生研究をおこ なってきた。フーン（Stephen Huhn）博士によれば，マウス による前臨床試験で良好な結果を得て，2011年3月，慢性期胸髄損傷患者に対する第I／II相治験をFDAに申請（NIH治験ID：NCTO1321333）のうち7名で感覚機能の改善が認められ，3名のAIS－A被験者は1年の経過観察中にAIS－B へ移行した。続いて，慢性期頸髄損傷を対象に第II相治験 をスタート（NCTO2163876）。損傷中心部の上下部分の髄腔内に細胞を投与し，免疫抑制剤を6か月間投与すると いうもので，運動•感覚評価で，有害事象，MRIによる画像評価，痛みや痙性も記録した。17名の被験者で133の有害事象がみられたが，ほとんどは手術，免疫抑制剤，脊髄損傷自体によるもので，細胞の髄腔内投与については問題 がなかった。また，細胞の投与量を増やしても，痙性，疼痛 や機能喪失といった深刻な有害事象は起こらなかった。術後1日の頸髄MRI解析から，特定の被験者で胸髄T2の神経信号の微増がみられ，術後6か月では神経信号の改善 がはっきりと認められた。1年後のデータで安全性が確認 され，4名の被験者で手と指の巧緻性が上がり，わずかな がら感覚の改善も認められた。その後の中間評価でも運動力の改善が認められたが，投資家が求める治療評価の基準には達しなかったため，2016年5月に治験を中断するこ ととなった。
－基金からの補足：規制当局の監視下でおこなわれた治験として，これか 5日本で予定されていiPS細胞による脊髄再生研究にも重要な知見をも たらすだろうという期待があった。胎児由来ながら神経幹細胞移植の安全性が示されたことと，ここでみられたいくつかの有害事象は，今後の研究に生かされるだろう。治験中断は非常に残念だが，神経幹細胞による治療法に取り組むほかの企業にも期待したい。ちなみに研究継続にはさら に3，500万ドルの資金が必要となる。シンポジウム参加者の多くは治験再開を望んでいた。

■iPS細胞由来のオリゴデンドロサイト前駆細胞移植＋ローズベンガルによるグリア瘢痕の除去
 ——アン・パール博士（ミネソタ大学）

パール（Ann Parr）博士らは，患者の皮膚から採取した線維芽細胞からリプログラム化細胞（iPS細胞）を構築し， それを分化させたオリゴデンドロサイト前駆細胞を使って臨床応用可能な治療法を開発した。患者自身の細胞を使 うことで免疫抑制剤の問題だけでなく，倫理問題も回避で きる。マウスで効果を確認したが，患者の皮膚からオリゴデ ンドロサイト前駆細胞を作るまでに約40日かかり，この間 に患者は慢性期に移行してしまう。慢性期に対処する方法 として考案されたのが，ローズベンガルという物質をグリア瘢痕のある部分に添加し光を当てると瘢痕組織が消えて なくなるというものだ。マウスでは良好な結果を得たが，ヒ トの試験に進むには投与量やタイミングに関して課題が残っている。

なお，ローズベンガルはドライアイの検査などで使用さ れる染色試薬である。この試薬でラットのグリア瘢痕を除去した研究成果は2007年に発表されている。
－基金からの補足：ミネソタ大学でおこなわれるiPS細胞を使った脊髄再生治療法は自家移植であるため，移植細胞を作製する間に患者が慢性期に移行してしまうことと高コストという課題がある。慢性期治療では グリア瘢痕の除去が課題となるが，同チームは光反応物質を使った治療法の開発に取り組んでいる。同様の作用をもつコンドロイチナーゼによ る治療法も開発の途にあり，一日でも早い実用化を期待したい。

■急性期治療のスカフォールドと慢性期治療の細胞注入装置
 ——アレックス・アイメッティ博士（InVivo Therapeutics）

InVivo Therapeuticsが3年をかけて開発した，急性期治療 の足場として用いる生体分解性のNeuro－Spinal Scaffold という製品は，前臨床試験で組織治癒，再髄鞘化，神経再生を促進したことを示した。損傷部に埋め込むと，1～2か月で体内で分解される。ラットでは，神経突起の発芽が促進されることを確認。ヒトの治験は2014年から始まってい

る（NCTO2138110，第III相試験）。これまで20名の胸髄完全損傷患者に受傷後1日以内に施術し，6か月後に評価。現在6か月を経過した患者は8名で，そのうち5名が改善 し，有害事象は認められていない。

現在開発中の注入型の細胞キャリアーNeural Trailは，慢性期損傷での失われた神経細胞を置換し，神経回路を構築することを目的とした生体材料だ。受傷から数か月後 に，損傷部にできた穴に埋め込む。また，迅速で効率的に細胞を注入する新しい細胞注入装置の開発にも取り組ん でおり，アレックス・アイメッティ（Alex Aimetti）博士らは， ヒトの慢性期治験を2年ほどで開始できるよう準備を進め ている。
－基金からの補足：Neuro－Spinal Scaffoldの治験はすでに第III相まで進 んでおり一定の効果が認められている。ただ，手術による脊髄損傷部の減圧が回復に寄与することもあり，Scaffoldの移植だけではなくほかの要因も影響している可能性は否定できない。慢性期の細胞移植では生体材料の足場が非常に重要な役割をもつと考えられるが，これはまだ前臨床段階だ。治験参加条件は損傷部に穴ができていること。現在はそれ を判断するための画像解析技術を開発しているとのこと。

■硬膜外電気刺激の神経再構築機序解明に向 けて

—ヶンダル・リー博士（メイヨー・クリニック）

脊髄を完全断裂させた動物や特定の脊損患者におい て，硬膜外電気刺激が運動機能回復に有効なことが明ら かになりつつある（弊紙no．65，no．66で既報）。ルイビル大学の治験では，患者に腰•仙椎部春髄の硬膜外電気刺激 をおこなうことで失われた随意機能が回復できることが示 された。リー（Kendall Lee）博士はUCLAとの共同研究で，硬膜外電気刺激の再現性を確認中（NCTO2592668，第I相）。患者はまず27週間のリハビリトレーニングを受け，そ の後手術で電極を移植して傷口が治るまで 3 週間安静に してから，刺激装置のスイッチを入れる。そして電気刺激 が入った状態でリハビリトレーニングをおこなう。ASIA－A の完全損傷（損傷部はL1－T11）の患者が，電極の移植手術後2日目に音楽に合わせて足を動かすことができた様子が動画で紹介された。装置は 2 本のワイヤーから15本 の電極が出ている。電気刺激を入れることで，脳の情報が何かしらの回路で損傷部を越えて足に伝わったことを意味 する。この被験者の回復基調はまだ続いている。次の段階 として，この被験者の8か月後の経過観察をおこなうこと，第2の被験者を登録すること，動物モデルで作用機序を明 らかにすることを検討している。長期的には10名の被験者 を登録し，ASIA－A，B，Cへと継続的な治療法を確立するこ とと，リハビリトレーニングの最適化をおこなう予定だ。

並行して，現在開発中の脊髄回路に直接接触できるきわ めて侵襲性の低い春髄刺激装置の効果をラットやブタで確かめる研究にも取り組んでいる。これらの技術を組み合 わせ，機能回復を最大限にする脊髄回路の評価をおこな えば，脊髄の再構築（ニューロモジュレーション）を選択的 に活性化する治療法が拓かれると期待している。
－基金からの補足：世界的に知名度の高いメイヨー・クリニックで，硬膜外電気刺激の追認試験がなされているのは，それだけこの治療法への期待度が高いということであり，将来どれだけ多くの患者に適用できる かを把握するためにも重要な取り組みである。

■非侵襲NMESの効果を確認

——キャリー・ショーグレン（カレッジ・ケニー・リハビリ
テーション研究所）

神経筋電気刺激（NMES）は，損傷部より下部の神経系 の興奮レベルを上昇させることで，損傷部を超えて伝達さ れてきた微弱な電気信号によって筋肉を収縮させる。装置 は，Restorative Therapies社からSAGEタブレットとしてす でに販売されている。NMESでは電極を埋め込む手術は不要。一度に複数の筋肉を刺激し，T12より下位の運動 ニューロンを損傷した患者では，装置の電源を切った後も しばらく効果が継続することが示された。また，家庭で使え るFES装置Xciteは，カナダで医療機器として販売の承認が下り，米国で審査中だ。ショーグレン（Carrie Shogren）博士によれば，この装置は介在ニューロンを活性化し，それ によって間接的に運動ニューロンが活性化される。複数の筋肉が同時に活性化することを示すデータもある。NMES の効果として，排便処理時間の短縮，膀胱の感覚機能，温度感知機能，腕と足の機能や体幹安定性の改善があり，す べての患者で上肢機能の改善がみられている。
－基金からの補足：電極を埋め込む硬膜外電気刺激に比べると，NMES の効果が現れるのは遅く，個人差もあるが，全体的に回復方向に向かっ ているのは確かだ。治験参加には一定量の骨密度が必要とのこと。硬膜外刺激とNMESを組み合わせた研究をしているグループもあると聞く。

まとめ

硬膜外電気刺激の治験と市場化が予想以上に進展して いる。経皮刺激は2年，硬膜外は 5 年後の市場化を目指し ていると発表があった。電気刺激装置の開発と並行して，電気刺激条件の最適化についての研究も進んでいる。本 シンポジウムに参加した研究者らは，電気刺激の治験への さらなる資金投入を訴え，よりいっそう研究が加速すること が期待される。

脊髄損傷入門（1）

国際脊髄医学会は，おもに発展途上国の医療者を対象に，インターネットで脊髄損傷について学べるツー ル＂elearn SCl．org（http：／／www．elearnsci．org／）＂を公開しています。その中から，最初に知っておきたいこととして最も基本的な知識をまとめた章を訳出しました。（伊藤典子訳，事務启編）

脊髄損傷はこれまでどうとらえられてきたか

脊髄損傷は破壊的な病気である，というのが古代からの認識でした。当初は「手の施しようのない病気」と言われて いたのです。脊䯣損傷者の大半が，腎不全や，褥瘡や肺感染症からくる敗血症のような合併症のために命を落とすと されていました。

20世紀半ばまでは，このような見方が主流でした。第一次世界大戦当時は，脊髓損傷者の 90% が 1 年以内に死亡して おり，20年以上生存する人は1 \％にすぎませんでした。

イギリスのルートヴィヒ・グットマン卿と米国のドナルド・ マンロー博士が春髄損傷への対応に革命をもたらしたの は，第二次世界大戦中のことでした。

なぜこんなにも破壊的な影響を与えるのか

脊䯣は，長くて細い管状の神経組織と支持細胞の束で，脳から伸びています。脳と脊䯣が一体となって中枢神経系 を構成しています。脊䯣は，脳と末梢神経系をつなぐ情報の おもな経路となっています。

ヒトの脊髄は，31の節から成り，各節には，感覚神経と運動神経が合わさった左右一対の脊髄神経があります。

脊柱（脊椎が積み重なったもの：背骨）は，脳から下行す る脊髄の通り道を保護しています。各脊椎に一対の脊髄神経の出口があり，身体の各部位につながっています。（図1）

EUSUKALANATO「Spinal cord and spinal nerves」より引用改変

脊髄が支配する機能は，運動，感覚，自律機能（たとえば，腸•膀胱の機能，性機能，血行動態の安定や体温調節），そ して呼吸機能です。（図2）

図2 損傷レベルによる障害

日本せきずい基金編「脊損ヘルスケア 基礎編』p．15より引用

脊髄損傷の定義と分類

1）脊髄損傷の定義

脊柱が損傷した結果，脊髄が傷つくことがあります。その場合，受傷した箇所より下の機能が影響を受けます。

ASIA（米国脊髄損傷協会）による「脊髄損傷の神経学的分類（ISNCSCI：International Standards for Neurological Classification of Spinal Cord Injury）」では，脊髄損傷は次 のように定義されています。

「脊䯣の損傷により，正常な運動機能，感覚機能，自律機能に，一時的あるいは永続的な変化をもたらすもの」。

神経には再生能力があまりないため，その損傷によって失われた機能も改善しにくいという性質があります。障害の程度は，受傷した部位と，神経がどのぐらい損傷したか
（完全損傷か不全損傷か）によって決まります。

2）受傷部位

頸部を損傷すると，四肢と体幹の麻痺が起こります。この ような麻痺を＂teraplegia＂（四肢麻痺）といいます。ギリシャ語で，＂tera＂は＂4＂，＂plegia＂は＂麻痺＂という意味です。

胸部，あるいは腰部の損傷は，体幹や下肢の麻痺を招き ます。このような麻痺を＂paraplegia＂（下半身の対麻痺）とい います。＂para＂はギリシャ語で＂対＂を意味します。

C5より上が損傷すると，C3－C5の神経支配を受けている横隔膜神経に影響します。横隔膜が麻痺し，胸筋が機能し なくなります。このような患者では，しばしば呼吸器の補助 が必要です。

3）完全損傷と不全損傷

完全損傷とは，「仙骨の最下部（S4－S5）で感覚および運動機能が消失したもの」とISNCSCIで定義されています。

障害を完全に予測することはできますが，回復の見込みは ありません。

不全損傷は，「仙骨の最下部（S4－S5）を含む，受傷部位より下の感覚機能あるいは運動機能が残存しているもの」と ISNCSCIで定義されています。複合的な症状が現れますが，回復の可能性もあります。不全損傷はおもに，前脊髄症候群，中心性脊髄症候群，後脊髄症候群，ブラウン・セカール症候群（春髄半側切断症候群）の4つのタイプに分類されます。

脊髄損傷者の人口分布

比較可能な発生率データがあるのは，北米，西ヨーロッ パ，オーストラリアだけです。北米の脊髄損傷者の数は100万人中 39 人で，オーストラリアの 100 万人中 15 人，西ヨー ロッパの100万人中16人の2倍以上となっています。

受傷ルワンダ，ケニアで手術，そして日本へ

20代後半から，途上国の開発支援に主に教育分野で関 わってきました。2013年からはアフリカの小国ルワンダで仕事をしていました。そして2014年8月，研修で地方出張 に出た帰り道，助手席に乗っていた車がスリップして崖下 に転落してしまったのです。ルワンダの同僚ら7名が乗って いて， 1 人が亡くなる事故でした。

事故は不運だったのですが，その不運の中には幸運も たくさんあって，私は助け出されました。事故から数日後に ルワンダからケニアに運ばれ手術を受け，さらに数週間後 に日本に搬送され 1 年近くの入院生活となりました。胸椎 の脱臼骨折で，横隔膜あたりから下の感覚がまったくなく なりました。50歳の年でした。

さーて，困ったことになったぞ。排便排尿の不便さと言っ たらないぞ。服の着脱も大変なことだし，何より背中は痛い し，あちこちの痺れ感はしつこいし。収入はどうなる？生活 はどうなる？

それでも時間は経つもので，リハビリが始まり，労災が認 められ，新しい車いすも手に入れました。やがて退院して，電車に乗ってあちこち出かけて，好きな料理もやって（退院後しっかり太りました），排便排尿の失敗は数々あり，背中の痛みやあちこちの痺れは相変わらずですが，家族親戚友人知人知らない方々にも助けられ，とにかく新しい日常が始まりました。

それじゃ，まずはルワンダに行かなくては。
事故後，荷物も置きっぱなしですし，銀行口座には生活費も入れっぱなし。何よりも，いっしょに働いてきた人たち に挨拶もできずにルワンダを離れてしまった。インター ネットで連絡はできますけれど，やはり直接会って話がし たい。

2016年7月，事故からもうすぐ2年が経つところで，車い

すでのルワンダ再訪となりました。ルワンダまでのトラン ジット込みで約 24 時間のフライトは，背中の痛みをだま しだまし，排尿は座席での自己導尿で，なんとか乗り切り ました。

＂千の丘の国＂は未舗装の坂道だらけ

ルワンダでは1994年の紛争で100万人ともいわれる人 たちが犠牲になりました。殺した側と殺された側の融和は進んでいますが，紛争の負の影響は今でも色濃く残ってい ます。一方で，紛争後の経済発展は著しく，治安は今はとて もいいのです。

仕事の現場では，ルワンダの人たちに，かの大虐殺の際 のことを聞くことはいまだにタブーでした。話したくない感 ありありで，聞けない。出身地によって「殺した側」か「殺さ れた側」か，ある程度わかることもあるので，生まれ故郷を気楽に聞くこともできない。それでも，ときどきほとばしる閃光のような悲しみや怒りに触れることがありました。何よ り，頭部に残る傷跡を持つ方がかなりおられます。おそら く，服の下に隠れる傷跡は数知れないのでしょう。

そういえば，ルワンダでは車いすの人はほとんど見かけ ませんでした。＂千の丘の国＂とも呼ばれるルワンダは，もう そこら中が坂だらけで，しかも舗装していないでこぼこ道 が多く，車いすを使う人には移動はかなり厳しい環境で す。それに，性能のいい車いすを手に入れるのだって，け して簡単なことではないはずです。

日本にいると，障害者をめぐる環境は，どんどん改善さ れているように思えます。春髄損傷に限っても，iPS細胞に よる再生医療やロボットスーツの開発など，最先端技術に よる治療の可能性が大いに広がりつつある。バリアフリー の普及も進んでいる。それはとても素敵なことです。

でも一方でますます広がる格差が気になります。先端医

療が進めば進むほど，医療格差は広がっていく。先端医療 が途上国の貧しい人たちに届く日はあるのだろうか。そん なことも，ふと考えてしまいます。

事故を経て実感する途上国との格差

格差は医療ばかりではありません。たとえば，私の車い すはけして安いものではありません。その金額の半分以上 はいわゆる福祉の恩恵です。住居の改造もそう。福祉制度 に関しては，まだ十分でない面があるとしても，多くの途上国と比較すれば日本の福祉はやはり進んでいる。

誰もが社会的弱者になり得る。でも，事故前に自分はそ のことをどれぐらい理解できていたのかと振り返ると，おそ らくわかっていなかった，他人事だったなあ。こうして福祉

に与れるのは，社会保障制度を築いてきてくれた無名の多 くの先人方の努力のおかげです。本当にありがたい。あり がたいからこそ，同じ地球の同じ時代に生きる人たちとの格差を思います。日本に生まれてラッキー，日本人でラッ キーで終わる話では，けしてない。

ルワンダの皆さんは，私の再訪をとても喜んでくれまし た。事故を起こした運転手氏とも再会できました。車いすで も私の元気な回復ぶりを彼に見てもらえたのも，少しほっ としたことでした。事故で助かったルワンダの同僚らは私よ りも軽症ですみ，みんな元気です。写真は同僚（女性）のご家族と。私が彼女らの結婚式に参加したのは事故の数週間前。そして，今回ルワンダに戻ったら，家族が 1 人増えて いたのでした。

脊髄損傷について書かれた注目の新刊をご紹介 します。（事務局編）

『ペンギンが教えてくれたこと ある—家を救った世界一愛情ぶかい鳥の話』

キャメロン・ブルーム，ブラッドリー・ トレバー・グリーヴ著，浅尾敦則訳 マガジンハウス，本体 1,600 円 + 税

写真家の夫キャメロンと元看護師の妻サムが，3人の育 ち盛りの息子たちとともに初めての家族冒険旅行に出かけ たところから物語は始まる。旅先の事故でサムが脊髄損傷 を負い，胸から下が麻痺してしまったのだ。半年以上におよ んだ入院生活を終え海辺の家へ帰ってきて間もなく，羽の傷ついたカラスの雛鳥が家族の仲間入りをした。それが＂ペ ンギン＂だ。ペンギンを家族に迎えた一家の暮らしと，心の変化を，夫が写真と文章で描き出したのがこの本だ。最後 に掲載されたサムのエッセイは，一人の脊損者の偽りのな い心情を吐露したもので切ないが，しかし穏やかな希望も感じさせてくれる。原著の印税の一部が，オーストラリアで当基金と同じ活動をしているスパイナルキュア・オーストラ リアに寄付されたのにならい，日本でも訳書発行にあたり，版元のマガジンハウスより日本せきずい基金へ印税の一部が寄付されることになった。

『頸髓損傷の

リハビリテーション改訂第3版』

二瓶隆一，陶山哲夫，飛松好子編著協同医書出版社，本体5，500円十税

1998年に初版が刊行されて以来，リハビリテーションに関 わる各職種から強い支持を得てきた同書が，最新の知見を踏 まえてこのほど大改訂された。病態，疫学，急性期•回復期のリ ハビリテーション，歯科ケアといった医療面の解説に加え，退院後の社会生活にも目を向け，在宅でのケア，公的支援制度 の利用，就労，自動車運転，性と子育てといったトピックスも詳 しく解說している。また，医療技術の進展をとらえ，急性期の治療，再生医療，ロボット等を用いた最先端のリハビリテーショ ンにも一章が割かれた。頸損者に関わる医師，看護師，理学療法士，作業療法士，歯科医師，心理士に必携の本。

Walk Again 2016の報告書ができました

ご希望の方には無償でお送りしますので，奥付にある事務局までご連絡をください。

－カンパの受付口座

郵便振替 記号 00140－2 番号 63307
銀行振込 みずほ銀行 多摩支店 普通1197435楽天銀行 サンバ支店 普通7001247
口座名義はいずれも「ニホンセキズイキキン」です。

発行人 障害者団体定期刊行物協会
〒157－0072 東京都世田谷区祖師谷3－1－17
ヴェルドウーラ祖師谷 102
編集人 特定非営利活動法人 日本せきすい基金•事務局
〒183－0034 東京都府中市住吉町4－17－16
TEL 042－366－5153 FAX 042－314－2753
E－mail jscf＠jscf．org
URL http：／／www．jscf．org
＊この会報は日本せきずい基金のホームページから，無償で ダウンロードできます。 頒価100円
大資料頒布が不要な方は事務局までお知らせください。

